
CERN
13 June 2007

Jet Algorithms, Areas and Subtraction

Matteo Cacciari
LPTHE (Paris 6/7 & CNRS)

Work in collaboration with
Gavin Salam and Gregory Soyez

- Jet Algorithms, “cone v. kt”

- Infrared safety, performance

- Jet areas

- Subtraction

Jet Algorithm

{pi} {jk}
jet algorithm

particles,
4-momenta,

calorimeter towers,

jets

Jet Algorithm requirements

A jet-finder must be
 infrared and collinear safe

 identically defined at parton and hadron level

soft emission shouldn’t change jets
collinear splitting shouldn’t change jets

so that perturbative calculations can be compared to experiments

It is nice if a jet-finder is

 not too sensitive to hadronisation, underlying event, pile-up

 realistically applicable at detector level (e.g. not too slow)

(because we are not very good at modeling non-perturbative stuff)

(this allows one to use perturbation theory)

Jet Algorithms

Two main jet-finder classes: cone algorithms and sequential clustering algorithms

Detailed definition can be messy.
Infrared/collinear safety must be

carefully studied.

Simple definition,
 infrared and collinear safe.

Until some time ago cone was infrared unsafe
and kt was slow

What happened next?

- kt made fast (MC, Salam, hep-ph/0512210)

- cone made safe (Salam, Soyez, arXiv: 0704.0292)

Both implementations (and a lot more) available via FastJet
www.lpthe.jussieu.fr/~salam/fastjet

Cone algorithms

A modern cone algorithm

 try an initial location

How do I decide where to place the cones?

 sum 4-momenta of particles inside cone, find axis
 use axis as a new trial location, and iterate
 stop when axis is stable
 merge overlapping cones, or split them into two

Issues:
☠ Where do I start?

Seedless (i.e. everywhere)? Very slow
Some particles above a threshold? Collinear unsafe
Calorimeter towers? Expt. dependent

☠ How do I split/merge?

Complicated procedure, risky, not necessarily physical

!"#$%& !"#$%&

'() '*)

+

,+ - . /!-

0++

/++

.++

-++

+

,+ - . /!-

0++

/++

.++

-++

MidPoint Infrared Unsafety

Three hard particles
clustered into two cones

Addition of a soft particles
changes the hard jets

configuration: three stable
cones are found

Infrared (un)safety

Q: How often are the hard jets changed by the addition of a soft particle?

A:

10
-5

10
-4

10
-3

10
-2

10
-1

1

Fraction of hard events failing IR safety test

JetClu

SearchCone

MidPoint

Midpoint-3

PxCone

Seedless (bad split-merge)

Seedless (good split-merge)

50.1%

48.2%

16.4%

15.6%

16.6%

0.05%

< 10
-9SISCone

badgood

Sa
la

m
 &

 S
oy

ez

SISCone speed

SISCone

MidPoint

kt (FastJet)

SISCone as fast as MidPoint → no penalty for infrared safety!

Jet mass

Infrared sensitivity is not just an annoying theorists’ fixation

MidPoint-SISCone

Up to 70% difference between MidPoint and SISCone

 0

 50

 100

 150

 200

 0 10 20 30 40 50

d
!

/d
M

3
 (

n
b

/G
e

V
)

(a) SISCone
midpoint(0)
midpoint(1)

 0 10 20 30 40 50 60 70 80
 0.01

 0.1

 1

 10

 100

d
!

/d
M

3
 (

n
b

/G
e

V
)

(b) SISCone
midpoint(0)
midpoint(1)

-1

-0.75

-0.5

-0.25

 0

 0.25

 0 10 20 30 40 50 60 70 80

re
l.
 d

if
f.

M (GeV)

(c)

midpoint(0)

 0 10 20 30 40 50 60 70 80
-1

-0.75

-0.5

-0.25

 0

 0.25

re
l.
 d

if
f.

M (GeV)

(d)

midpoint(1)

Invariant
mass of a jet

SISCone

Salam & Soyez

Recombination algorithms

kt and Cambridge/Aachen

The definition of a sequential clustering algorithm is extremely simple.

For instance, take the longitudinally invariant kt:

Calculate the distances between the particles:

Calculate the beam distances:

Combine particles with smallest distance or, if diB is smallest, call it a jet

Find again smallest distance and repeat procedure until no particles are left

diB = k
2

ti

This definition is infrared/collinear safe, has no artificial parameters, does not lead to dark towers or
overlapping jets, can be applied equally well to data and theory

S. Catani, Y. Dokshitzer, M. Seymour and B. Webber,
Nucl. Phys. B406 (1993) 187
S.D. Ellis and D.E. Soper, Phys. Rev. D48 (1993) 3160

di j =min(k2ti,k
2

t j)
!"2+!#2

R2

Variant: Cambridge/Aachen. Like kt, but with and di j =
!"2+!#2

R2
diB = 1

Clustering speed

Time taken to cluster N particles:

Clustering quickly gets very
slow: processing millions of
events at LHC is simply not

feasible with standard clustering
algorithms

1 ms

10 s

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

t
(s

)

N

KtJet FastJet

OJF
MidPoint

JetClu
(almost IR unsafe)

Tevatron
LHC (single LHC (c. 20 LHC
interaction) interactions) Heavy Ion

e.g. clustering a single heavy
ion event at LHC would take

1 day of CPU!

The kt jet-finder has, however, an apparent drawback: finding all the distances is an N2

operation, to be repeated N times

⇒ naively, the kt jet-finder scales like N3

FastJet
To improve the speed of the algorithm we must find more efficiently which

particle is “close” to another and therefore gets combined with it

Observation (MC, G.P. Salam, hep-ph/0512210):

If i and j form the smallest dij
and

kti < ktj
⇒ Rij ≤ Rik ∀ k ≠ j

Translation from mathematics:

When a particle gets combined with another, and has the smallest kt, its
partner will be its geometrical nearest neighbour on the cylinder

spanned by η and ϕ

This means that we need to look for partners only
among the O(N) nearest neighbours of all particles

i.e. j is the geometrical nearest neighbour of i

FastJet

Our problem has now become a geometrical one:
how to find efficiently the (nearest) neighbour(s) of a point

1

2

3

4

5

6

7 8

9

10

1 7

3

4

8

2

9

5

10

6

Widely studied problem in computational geometry
Tool: Voronoi diagram

Definition: each cell contains the locations which
have the given point as nearest neighbour

Key feature: once the Voronoi diagram is constructed, the nearest neighbour of a
point will be in one of the O(1) cells sharing an edge with its own cell

Example : the G(eometrical) N(earest) N(eighbour) of point 7 will be found among 1,4,2,8
and 3 (it turns out to be 3)

1

2

3

4

5

6

7 8

9

10

1 7

3

4

8

2

9

5

10

6

The dual of a Voronoi diagram is a Delaunay triangulation

FastJet

The FastJet algorithm:

Construct the Voronoi diagram of the N particles
using the CGAL library

O(N lnN)

Find the GNN of each of the N particles. Construct the
dij distances, store the results in a priority queue (C++ map) O(N lnN)

Merge/eliminate particles appropriately

Update Voronoi diagram and distances’ map O(lnN)
repeat N
times

MC and G.P. Salam, hep-ph/0512210

Overall, an O(N ln N) algorithm

NB. Results identical to standard kt algorithm. This is NOT a new jet-finder.

FastJet performance

Time taken to cluster N particles:

1 ms

10 s

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

t
(s

)

N

KtJet FastJet

OJF
MidPoint

JetClu
(almost IR unsafe)

Tevatron
LHC (single LHC (c. 20 LHC
interaction) interactions) Heavy Ion

Almost two orders of magnitude gain at small N (related O(N2) implementation)

Large-N region now reachable

Jet areas and subtraction

So far, old jet clustering, just better and/or faster

High speed and infrared safety allow for a qualitatively
new use of jet clustering, through new features:

Jet areas

Jet areas

~ 2000 particles

Clustering takes O(20 s) with
standard algorithms, but only
O(20 ms) with FastJet

Try to estimate the
active area of each jet
Fill event with many very soft
particles, count how many are

clustered into given jet

~ 10000 particles

Don’t even think about it with
standard algorithms, O(1 s)
with FastJet

Jet areas

[NB. This is a definition]

Jet areas

Jet areas are implemented in FastJet > v 2.0
// the input particles’ 4-momenta
vector<fastjet::PseudoJet> input_particles;

// choose the jet algorithm
fastjet::JetDefinition jet_def(kt_algorithm,R);

// define the kind of area
fastjet::GhostedAreaSpec ghosted_area_spec(ghost_etamax);
fastjet::AreaDefinition area_def(ghosted_area_spec);

// perform the clustering
fastjet::ClusterSequence cs(input_particles,jet_def,area_def);

// get the jets with pt > 0
vector<fastjet::PseudoJet> jets = cs.inclusive_jets();

// a jet transverse momentum, area, and area 4-vector
double pt = jets[0].perp();
double area = cs.area(jets[0]);
fastjet::Pseudojet area_4vector = cs.area_4vector(jets[0]);

What do I need them for?

 0

 0.01

 0.02

 0.03

 0.04

 0 50 100 150 200 250

1
/N

 d
N

/d
m

a
s
s

reconstructed Z mass [GeV]

R=0.7, LHC

kt, no UE

+ UE

+ high-lumi (100 fb
-1

/yr)

What are areas
good for? Challenge at high-luminosity machines:

reconstruct objects from jets when a lot of
spurious activity is present

You’d like to be able to
subtract this extra stuff

from the jets and get back
to the correct Z mass

Can knowledge of jet areas help?

pT (jet) ~ pT (parton)

The intuitive picture

+

Average underlying
momentum density

×
‘size’ of the jet

But how do we get the momentum density of the radiation?

The ‘size’ of the jet can be the active area we just defined

Areas distribution

They can have very
different areas

The jets adapt to the
surrounding environment

Area vs. pT
Key observation:

pT/Area is fairly constant, except for the hard jets

The distribution of
background jets establishes

its own average
momentum density

(NB. this is true on an
event-by-event basis)

Subtraction

A proper operative definition of jet area can be given

When a hard event is superimposed on a roughly uniformly
distributed background, study of transverse momentum/area
of each jet allows one to determine the noise density ρ (and its
fluctuation) on an event-by-event basis

Once measured, the background density can be used to correct the
transverse momentum of the hard jets:

p
hard jet, corrected
T = p

hard jet, raw
T −!×Areahard jet

// the input particles’ 4-momenta
vector<fastjet::PseudoJet> input_particles;

// choose the jet algorithm
fastjet::JetDefinition jet_def(kt_algorithm,R);

// define the kind of area
fastjet::GhostedAreaSpec ghosted_area_spec(ghost_etamax);
fastjet::AreaDefinition area_def(ghosted_area_spec);

// perform the clustering
fastjet::ClusterSequence cs(input_particles,jet_def,area_def);

// get the jets with pt > 0
vector<fastjet::PseudoJet> jets = cs.inclusive_jets();

// a jet transverse momentum, area, and area 4-vector
double pt = jets[0].perp();
double area = cs.area(jets[0]);
fastjet::Pseudojet area_4vector = cs.area_4vector(jets[0]);

The subtraction

// get the median, i.e. rho
double rho = cs.median_pt_per_unit_area(rapmax);
double rho_4v = cs.median_pt_per_unit_area_4vector(rapmax);

// subtract
double pt_sub = pt - rho * area;
fastjet::Pseudojet p_sub = jets[0] - rho_4v * area_4vector;

NB. The “_4vector’’ variants also correct jet directions, and are better for large R

Dijet subtraction
p

t,
je

t+
P

U
 -

 p
t,

je
t
[G

e
V

]

pt,jet [GeV]

a) raw

LHC, high lumi.
-20

-10

 0

 10

 20

 30

 40

 50

 60

 100 1000
p

t,
je

t+
P

U
,s

u
b
 -

 p
t,

je
t,

s
u

b
 [

G
e

V
]

pt,jet,sub [GeV]

b) subtracted kt

Cam/Aachen

SISCone

-20

-10

 0

 10

 20

 30

 40

 50

 60

 100 1000

LHC: dijet + pileup

raw subtracted

pt,jet+PU - pt,jet pt,jet+PU sub - pt,jet sub

(on average 20 GeV added to jets)

R = 0.7

Reconstructed Z’ mass

 0

 0.005

 0.01

 0.015

 1900 2000 2100

1
/N

 d
N

/d
m

 [
G

e
V

-1
]

m [GeV]

kt, R=0.7

LHC, high lumi

Z! at 2 TeV

no pileup

no pileup, sub

pileup

pileup, sub

Conclusions

Cone and recombination are alternative and complementary
approaches to defining jets

So far, cone algorithms were extremely messy and generally infrared
unsafe. Now we finally have a really infrared safe (and reasonably fast)
cone algorithm, SISCone. Phenomenology will have to follow

Recombination algorithms like kt and Cambridge enjoy much simpler
definitions. They are always infrared safe

FastJet (http://www.lpthe.jussieu.fr/~salam/fastjet) resolves the speed
issue, and allows one to calculate the area of jets

The area of jets can be used for background subtraction, opening the
way to a more widespred use of kt/cambridge clustering in high
luminosity and heavy ions collisions environments

